吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1079-1084.

• • 上一篇    下一篇

Gorenstein强FP-内射模

方慧江, 杨刚   

  1. 兰州交通大学 数理学院, 兰州 730070
  • 收稿日期:2023-12-26 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 杨刚 E-mail:yanggang@mail.lzjtu.cn

Gorenstein Strongly FP-Injective Modules

FANG Huijiang, YANG Gang   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2023-12-26 Online:2024-09-26 Published:2024-09-26

摘要: 首先, 借助内射模的零调复形和Hom函子的理论, 引入Gorenstein强FP-内射模的概念. 其次, 利用马蹄引理和构造拉回图的方法, 研究Gorenstein强FP-内射模的同调性质, 证明Gorenstein强FP-内射模类GSFI是内射可解类, 关于直积及直和项封闭, 并且如果任意R-模的Gorenstein强FP-内射维数有限, 则(GSFI,GSFI)构成完全遗传的余挠对.

关键词: 强FP-内射模, Gorenstein强FP-内射模, 余挠对

Abstract: Firstly, we introduce the notion of Gorenstein strongly FP-injective modules by means of acyclic complexes of injective modules and the theory of  Hom functors. Secondly, we study homological properties of Gorenstein strongly FP-injective modules  by using the Horseshoe Lemma and the method of constructing pull-back diagrams, and prove that the class GSFI of Gorenstein strongly FP-injective modules is injectively resolving, with respect to closed under arbitrary direct products and direct summands, and if the Gorenstein strongly FP-injective dimension is finite for every R-module, then (GSFI, GSFI) forms a complete hereditary cotorsion pair.

Key words: strongly FP-injective module, Gorenstein strongly FP-injective module, cotorsion pair

中图分类号: 

  • O154.2