吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (6): 1317-1324.

• • 上一篇    下一篇

一类悬臂梁方程的可解性

沈瑾睿   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2024-01-25 出版日期:2024-11-26 发布日期:2024-11-26
  • 通讯作者: 沈瑾睿 E-mail:sjr17843996257@163.com

Solvability of a Class of Cantilever Beam Equations

SHEN Jinrui   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2024-01-25 Online:2024-11-26 Published:2024-11-26

摘要: 用锥上不动点定理, 研究一类悬臂梁方程{w″″(t)=λf(t,w(t)), t∈(0,1), w(0)=w′(0)=w″(1)=w(1)=0,其中λ为正参数, f∈C([0,1]×[0,∞),[0,∞)). 在非线性项f满足超线性或者次线性增长条件的情形下给出其正解的存在性和多解性结果.

关键词: 悬臂梁方程, 存在性, 多解性, 正解,

Abstract: By using the fixed point theorem on the cone, the author study a class of  cantilever beam equations{w″″(t)=λf(t,w(t)), t∈(0,1), w(0)=w′(0)=w″(1)=w(1)=0, where λ is a positive parameter, f∈C([0,1]×[0,∞),[0,∞)). The existence and multiplicity results of its positive solutions are given when the nonlinear term f satisfies superlinear or sublinear growth condition.

Key words: cantilever beam equation, existence, multiplicity, positive solution, cone

中图分类号: 

  • O175.8