吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (6): 1377-1383.

• • 上一篇    下一篇

基于知识嵌入技术的制度文件推荐算法

李鑫1, 王文迪2, 张伟3, 冯浩4, 韩霄松2   

  1. 1. 吉林大学 原子与分子物理研究所, 长春 130012; 2. 吉林大学 计算机科学与技术学院, 长春 130012;
    3. 吉林大学 后勤处, 长春 130012; 4. 吉林大学 政策与法律办公室, 长春 130012
  • 收稿日期:2024-01-05 出版日期:2024-11-26 发布日期:2024-11-23
  • 通讯作者: 韩霄松 E-mail:hanxiaosong@jlu.edu.cn

Recommendation Algorithm  for Institutional Documents Based on Knowledge Embedding Technology

LI Xin1, WANG Wendi2, ZHANG Wei3, FENG Hao4, HAN Xiaosong2   

  1. 1. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    3. Logistics Department, Jilin University, Changchun 130012, China; 4. Policy and Legal Office, Jilin University, Changchun 130012, China
  • Received:2024-01-05 Online:2024-11-26 Published:2024-11-23

摘要: 针对制度文件推荐过程中传统算法存在准确率和推荐效率较低的问题, 提出一种基于知识嵌入的文本推荐算法.  通过将知识图谱中的知识转化为特征向量, 并结合神经网络模型, 有效提高了推荐系统在处理海量多样数据时的准确性和稳定性. 实验结果表明, 该算法在面对冷启动和用户兴趣多样化的情况下, 表现出了优于传统方法的推荐精度和稳定性, 为大规模推荐系统中的数据稀疏问题和个性化需求提供了更高效和可靠的解决方案, 有助于改善用户体验并提升推荐系统的整体性能.

关键词: 知识图谱, 词嵌入, 图嵌入, 神经网络

Abstract: Aiming at the problem of low accuracy and low recommendation efficiency in  the traditional algorithms during the recommendation process of institutional documents, we proposed a text recommendation algorithm based on knowledge embedding. By transforming knowledge in the  knowledge graph  into feature vectors and combining them with neural network models, the accuracy and stability of the recommendation system were effectively improved when dealing with massive and diverse data. Experimental results show that the proposed algorithm exhibits better recommendation accuracy and stability than the traditional methods in the face of cold start and diverse user interests. It provides a more efficient and reliable solution to the data sparsity problem and personalisation requirements in large-scale recommendation systems, which helps to improve the user experience and enhance the overall performance of the recommendation system.

Key words: knowledge graph, word embedding, graph embedding, neural network

中图分类号: 

  • TP181