吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (6): 1384-1390.

• • 上一篇    下一篇

屋型拓扑粒子群优化算法与工程优化问题求解

高铭晗1, 王丽敏2, 黄锐露2, 张宇飞3, 李明洋4   

  1. 1. 长春工业大学 计算机科学与工程学院, 长春 130012; 2. 广东财经大学 信息学院, 广州 510320;
    3. 长春大学 计算机科学技术学院, 长春 130022; 4. 长春工业大学 经济管理学院, 长春 130012
  • 收稿日期:2023-06-12 出版日期:2024-11-26 发布日期:2024-11-26
  • 通讯作者: 王丽敏 E-mail:20211016@gdufe.edu.cn

House Topology-Based Particle Swarm Optimization Algorithm and Solution to Engineering Optimization Problems

GAO Minghan1, WANG Limin2, HUANG Ruilu2, ZHANG Yufei3, LI Mingyang4   

  1. 1. School of Computer Science & Engineering, Changchun University of Technology, Changchun 130012, China;
    2. School of Information Science, Guangdong University of Finance and Economics, Guangzhou 510320, China;
    3. School of Computer Science and Technology, Changchun University, Changchun 130022, China;
    4. School of Economics and Management, Changchun University of Technology, Changchun 130012, China
  • Received:2023-06-12 Online:2024-11-26 Published:2024-11-26

摘要: 针对粒子群优化算法在优化复杂工程问题时存在搜索效率低和易陷入局部最优的问题, 提出一种屋型拓扑粒子群优化算法. 该算法通过提出屋型拓扑和设计适应其特性的位置更新策略, 改善粒子群优化算法信息传递和交流方式, 提升算法的收敛速率和全局优化能力. 在基准函数上的对比实验结果表明, 屋型拓扑粒子群算法的寻优精度、 收敛速度和稳定性均优于其他4种改进算法. 在3个实际工程优化问题上的仿真实验结果进一步验证了该算法的有效性和实用性. 

关键词: 屋型拓扑, 粒子群优化算法, 工程优化问题, 基准函数, 仿真实验

Abstract: Aiming at  the problems of low search efficiency and susceptibility  to  local optima in  particle swarm optimization algorithm for optimizing  complex engineering problems, we proposed  a house topology-based particle swarm optimization algorithm. By 
 proposing  a house topology and designing a position update strategy tailored to its characteristics, the algorithm improved the information transmission and communication methods of  particle swarm optimization algorithm, thereby enhancing the convergence rate and global optimization capability of the algorithm. The comparative experimental results on benchmark
 functions show that the optimization accuracy, convergence speed, and stability of the house topology-based particle swarm optimization algorithm are superior to the other  4 improved algorithms. The simulation results  on 3 real-world engineering optimization problems further validate the  effectiveness and practicality of the proposed algorithm.

Key words: house topology,  , particle swarm optimization algorithm, engineering optimization problem, benchmark function, simulation experiment

中图分类号: 

  • TP301.6