吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (6): 1391-1400.

• • 上一篇    下一篇

 基于关系记忆与路径信息的多跳知识图谱问答算法

孟令鑫1, 才华1, 付强2, 易亚希1, 刘广文1, 张晨洁1   

  1. 1. 长春理工大学 电子信息工程学院, 长春 130022; 2. 长春理工大学 空间光电技术研究所, 长春 130022
  • 收稿日期:2023-05-26 出版日期:2024-11-26 发布日期:2024-11-26
  • 通讯作者: 才华 E-mail:caihua@cust.edu.cn

Multi-hop Knowledge Graph Question Answering Algorithm Based on Relational Memory and Path Information

MENG Lingxin1, CAI Hua1, FU Qiang2, YI Yaxi1, LIU Guangwen1, ZHANG Chenjie1   

  1. 1. School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 
    2. Institute of Space Ophotoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2023-05-26 Online:2024-11-26 Published:2024-11-26

摘要: 针对自然语言处理领域中不完整知识图谱导致实体关联膨胀, 进而需进行额外推理和推断使答案的推导过程变得更复杂的问题, 提出一种结合关系记忆与路径信息的知识图谱问答算法RMP-KGQA. 该算法利用关系记忆网络解决问题与知识图谱映射空间不一致的问题, 利用其路径信息丰富评分函数, 显著提高了智能问答检索系统的准确性和鲁棒性. 实验结果表明, 在基准数据集WebQSP和WebQSP-50上, RMP-KGQA的准确率分别比EmbedKGQA提升了2.8,2.4个百分点. 消融实验进一步验证了关系记忆感知和路径信息在模型中的关键作用. 因此, RMP-KGQA是一种解决复杂环境下多跳知识图谱问答问题的有效方法.

关键词: 知识图谱问答, 知识图谱, 知识图谱嵌入, 关系记忆网络

Abstract: Aiming at the problem that in the field of natural language processing,  incomplete knowledge graphs led to the entity association expansion, which required additional inference and reasoning to make the derivation process of answers  more complex, we proposed  a knowledge graph question answering algorithm  RMP-KGQA that combined relational memory and  path information. The algorithm used a relational memory network to solve  the problem of inconsistency between the problem and the knowledge graph mapping space, and  enriched the scoring function with its path information, significantly enhancing the accuracy and robustness of the intelligent question answering retrieval system. The experimental results show that on the WebQSP and WebQSP-50 benchmark datasets, the accuracy of RMP-KGQA  increases by 2.8 and 2.4 percentage points respectively compared to EmbedKGQA. Ablation experiments further verify  the key roles of relational memory perception and path information in the model. Therefore,  RMP-KGQA is an effective method for solving  multi-hop knowledge graph question answering problems  in complex environments.

Key words: knowledge graph question answering, knowledge graph, knowledge graph embedding, relational memory network

中图分类号: 

  • TP391.1