吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 83-0090.

• • 上一篇    下一篇

本体指导下的安全强化学习最优化策略

郝嘉宁1,2, 姚永伟3, 叶育鑫1,4   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 浪潮通用软件有限公司, 济南 250101;
    3. 中国人民解放军 63611部队, 新疆 库尔勒 841000;4. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2024-01-05 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 叶育鑫 E-mail:yeyx@jlu.edu.cn

Optimization Strategy  for Safety Reinforcement Learning Guided by Ontology

HAO Jianing1,2, YAO Yongwei3, YE Yuxin1,4   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Inspur General Software Co., Ltd., Jinan 250101, China;3. 63611 Unit of the Chinese People’s Liberation Army, Korla 841000, Xinjiang Uygur Autonomous Region, China;
    4. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2024-01-05 Online:2025-01-26 Published:2025-01-26

摘要: 针对安全强化学习实现过程中, 基于屏蔽的实现方式可能受制于没有合适的备用策略可供使用, 导致判断出危险也不能阻止系统离开安全状态, 结合知识的实现方式虽然能通过提取概念特征, 用结构化的知识对指定状态给予安全指导, 但有时知识蕴含的指导可能并不是最优的策略, 甚至可能不如智能体探索习得策略的问题, 提出一个本体指导下的安全强化学习最优化策略, 实现风险识别规避、动作生成最优化. 基于该理论设计和实现了一个在无人机避障场景下的仿真系统, 并使用5种不同的强化学习算法进行效果验证. 实验结果表明, 基于本体指导的安全强化学习最优化策略能在屏蔽风险动作的基础上, 实现智能体备用策略选取, 比传统强化学习方法性能更优.

关键词: 安全强化学习, 屏蔽机制, 本体, 深度神经网络, 联合查询

Abstract: Aiming at the problem that in the implementation process of safety reinforcement learning, the implementation approach based on shielding might  be constrained by the lack of suitable alternative policies available, which resulted in the inability to prevent  the system from leaving a safe state even if danger was detected. Although the implementation approach of  knowledge integration could  provide safety guidance for specific states by extracting conceptual features and applying structured knowledge, sometimes the guidance embedded in knowledge might not be the optimal strategy, and might even be inferior to  the strategies learned by agent exploration. We proposed an optimization strategy for safety reinforcement learning guided by ontology to achieve  risk 
identification avoidance and  action generation optimization. Based on this theory, we designed and implemented a simulation system in the scenario of unmanned aerial vehicle  obstacle avoidance, and verified  the effectiveness by using  five different reinforcement learning algorithms. The experimental results show that the optimization strategy for safety reinforcement learning based on  ontology guidance can achieve  alternative policy selection for intelligent agents on the basis of shielding risky actions, and has better performance than  traditional reinforcement learning methods.

Key words: safety reinforcement learning, shielding mechanism, ontology, deep neural network, conjunctive query

中图分类号: 

  • TP183