吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1533-1542.

• •    下一篇

一类具卷积项和弱阻尼项的波动方程(组)全局解的不存在性

李冬梅, 明森, 杜波   

  1. 中北大学 数学学院, 太原 030051
  • 收稿日期:2025-02-03 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 明森 E-mail:senming1987@163.com

Nonexistence of Global Solutions to a Class of Wave Equations (Systems) with Convolution Terms and Weak Damping Terms

LI Dongmei, MING Sen, DU Bo   

  1. School of Mathematics, North University of China, Taiyuan 030051, China
  • Received:2025-02-03 Online:2025-11-26 Published:2025-11-26

摘要: 用检验函数方法, 结合Heisenberg Laplace算子和K函数的性质, 并利用相关微分不等式技巧, 研究n维空间中一类具有卷积项和弱阻尼项的波动方程(组)的初值问题解的破裂问题. 结果表明, 当初值满足一定假设条件时, 该问题不存在全局弱解. 所得结果给出了卷积项中参数对解的破裂的影响, 并为高维带弱阻尼和卷积型非线性项的波动方程(组)解的存在性研究提供了参考.

关键词: 弱阻尼波动方程, Heisenberg群, 检验函数方法, 破裂

Abstract: By using the test function method, combining properties of the Heisenberg Laplace operator and K function, and utilizing relevant differential inequality techniques, we studied the rupture problem of the initial value problem solutions for  a class of wave equations (systems) with convolution terms and weak damping terms in n-dimensional space. The results show that there is no global weak solution to the problem when the initial value satisfies certain assumptions. This obtained result gives the influence of parameters in the convolution term on rupture of the solution, and provided a reference for the study of existence of solutions to wave equations (systems) with weak damping and convolution type nonlinear terms in high dimensional spaces.

Key words: weakly damped wave equations, Heisenberg group, test function method, rupture

中图分类号: 

  • O175.29