吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1655-1662.

• • 上一篇    下一篇

基于改进ResNet50模型的体育图像分类

王立宁1, 蔡旭东2   

  1. 1. 长春师范大学 体育学院, 长春 130032; 2. 长春师范大学 计算机科学与技术学院, 长春 130032
  • 收稿日期:2024-12-13 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 王立宁 E-mail:5655201@qq.com

Sports Image Classification Based on  Improved ResNet50 Model

WANG Lining1, CAI Xudong2   

  1. 1. Physical Education Institute, Changchun Normal University, Changchun 130032, China;
    2. College of Computer Science and Technology, Changchun Normal University, Changchun 130032, China
  • Received:2024-12-13 Online:2025-11-26 Published:2025-11-26

摘要: 针对体育图像分类任务中图像内容复杂、 动作姿态多变以及背景干扰较大等问题, 提出一种基于改进ResNet50模型的体育图像分类算法. 首先, 在残差结构内部嵌入挤压和激励模块, 以自适应增强关键通道特征, 提升特征表达能力; 其次, 在此基础上引入特征金字塔网络, 实现多尺度特征的有效融合, 增强模型对不同尺寸目标的感知能力; 最后, 通过全局平均池化与全连接层完成分类预测. 实验结果表明, 该方法的分类准确率较传统ResNet50模型约提高5%, 充分体现了其在应对复杂动作与多变背景时的稳健性和优越性. 实验结果不仅验证了该方法的有效性和可行性, 且为体育视频分析、 智能运动训练等相关领域的应用提供了更可靠的技术支撑与实践参考.

关键词: 深度残差网络, 体育图像分类, ResNet50模型, 注意力机制, 多尺度特征融合

Abstract: Aiming at the problem of complex image content, diverse action postures, and significant background interference in the task of sports image classification,  we proposed a sports image classification algorithm based on an improved ResNet50 model. Firstly,  a squeeze-and-excitation module was embedded within the residual structure to adaptively enhance key channel features and improve feature expression capability. Secondly, on this basis, a feature pyramid network was introduced to achieve effective fusion of multi-scale features, and enhance the model’s perception ability of objects at different scales. Finally, classification prediction was performed through global average pooling and  fully connected layers. Experimental results show  that the classification accuracy of the proposed method is about  5% higher than that of the conventional ResNet50 model, fully demonstrating  its robustness and superiority in handling complex actions and diverse backgrounds. The experimental results  not only validate the effectiveness and feasibility of the proposed method,  but also provide more reliable technical support and practical reference for applications in sports video analysis,  intelligent sports training and other related fields.

Key words: deep residual network, sports image classification, ResNet50 model, attention mechanism, mult-scale feature fusion

中图分类号: 

  •