吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1767-1774.

• • 上一篇    下一篇

飞秒激光制备高红外吸收SiC表面

郭明瑞1, 赵智炎1, 李健2, 王燕2, 李爱武1, 徐颖1, 于颜豪1   

  1. 1. 吉林大学 电子科学与工程学院集成光电子学国家重点实验室, 长春 130012;2. 长春工业大学 材料科学与工程学院先进结构材料教育部重点实验室, 长春 130012
  • 收稿日期:2024-03-04 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 于颜豪 E-mail:yanhao_yu@jlu.edu.cn

High Infrared Absorption SiC Surface Prepared by Femtosecond Laser

GUO Mingrui1, ZHAO Zhiyan1, LI Jian2, WANG Yan2, LI Aiwu1, XU Ying1, YU Yanhao1   

  1. 1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China;  2. Key Laboratory of Advanced Structural Materials of Ministry of Education, College of Material Science and Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2024-03-04 Online:2025-11-26 Published:2025-11-26

摘要: 通过飞秒激光加工技术提高SiC在红外波段(尤其在10.3~12.6 μm内)的光吸收率, 以解决传统加工技术难以精细加工且吸收率低的问题. 采用飞秒激光直写技术, 通过改变激光加工的关键参数, 在SiC表面生成特定微纳结构, 并用扫描电子显微镜和Raman光谱仪对加工后的样品表面形貌和光学特性进行分析. 结果表明: 通过飞秒激光加工可有效调制SiC的表面形态, 其红外吸收率显著提高, 吸收效率最高可达92%; 微纳结构可降低材料的反射率, 并增强表面声子极化激元的激发, 从而增强材料的红外光吸收能力.

关键词: 超快激光, 减反射, 剩余射线带, Raman光谱

Abstract: We used femtosecond laser processing technology to improve the optical absorption rate of SiC in the infrared band (especially within the 10.3~12.6 μm range), in order to solve the problem of traditional processing techniques being difficult to finely process and having low absorption rates. We used femtosecond laser direct writing technology to generate specific micro/nanostructures on the surface of SiC by adjusting key parameters of laser processing, and analyzed the surface morphology and optical properties of the processed samples by using scanning electron microscopy and Raman spectrum. The results show that the surface morphology of SiC can be effectively modulated through femtosecond laser processing, and its infrared absorption rate is significantly improved, with a maximum absorption rate of 92%. The nanostructures can reduce the reflectance of materials and enhance the excitation of surface phonon polaritons, thereby enhancing the infrared light absorption capacity of materials.

Key words:  , ultrafast laser, antireflection, Reststrahlen band, Raman spectrum

中图分类号: 

  • TN249