吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 87-0092.

• • 上一篇    下一篇

基于MCP惩罚的稀疏协方差矩阵估计

林珊屹1, 徐平峰2   

  1. 1. 长春工业大学 数学与统计学院, 长春 130012; 2. 东北师范大学 前沿交叉研究院, 长春 130024
  • 收稿日期:2025-04-23 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 徐平峰 E-mail:xupf_stat@126.com

Sparse Covariance Matrix Estimation Based on MCP  Penalty

LIN Shanyi1, XU Pingfeng2   

  1. 1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China;
    2. Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China
  • Received:2025-04-23 Online:2026-01-26 Published:2026-01-26

摘要: 针对稀疏协方差矩阵估计问题, 提出一种基于MCP(minimax concave penalty)惩罚对数似然的稀疏协方差阵估计量, 并利用坐标下降算法进行求解. 模拟研究结果表明, 在大多数情况下, 该方法在估计稀疏协方差矩阵时, 相较于Lasso惩罚和SCAD(smoothly clipped absolute deviation)惩罚方法, 能获得更小的L1范数、 Kullback-Leibler距离以及Frobenius范数, 特别是在AR(1)模型设定下表现更突出. 此外, 通过分析流式细胞仪测量得到的蛋白质浓度数据, 验证了MCP惩罚方法在实际应用中的优越性能.

关键词: 协方差矩阵, MCP惩罚, 坐标下降算法, 稀疏估计

Abstract: Aiming at the problem of sparse covariance matrix estimation, we proposed a sparse covariance matrix estimator based on the MCP (minimax concave penalty) penalized log-likelihood, and solved it by using  the coordinate descent algorithm. The simulation results show that the proposed method can achieve  smaller L1 norms, Kullback-Leibler distances, and Frobenius norms compared to the Lasso penalty and SCAD (smoothly clipped absolute deviation) penalty methods when estimating sparse covariance matrices in most cases, especially under the AR(1) model setting, the performance is more outstanding. In addition, the superior performance of the MCP penalty method for practical applications is verified by analyzing the protein concentration data measured by flow cytometry.

Key words:  , covariance matrix, MCP penalty, coordinate descent algorithm, sparse estimation

中图分类号: 

  • O212.1