J4

• 数学 • 上一篇    下一篇

求解随机微分方程的三级半隐式随机龙格库塔方法

王 鹏1, 吕显瑞1, 张伸煦2   

  1. 1. 吉林大学 数学研究所, 长春 130012; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2007-10-16 修回日期:1900-01-01 出版日期:2008-03-26 发布日期:2008-03-26
  • 通讯作者: 吕显瑞

Threestage Semiimplicit Stochastic RungeKutta Methods for Stochastic Differential Equations

WANG Peng1, Lv Xianrui1, ZHANG Shen xu2   

  1. 1. Institute of Mathematics, Jilin University, Changchun 130012, China;2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2007-10-16 Revised:1900-01-01 Online:2008-03-26 Published:2008-03-26
  • Contact: Lv Xianrui

摘要: 构造了求解Stratonovich随机微分方程的三级半隐式随机龙格库塔方法, 给出了其两种数值格式, 并讨论了方法的数值稳定性和计算精度. 与同阶方法相比, 所给方法具有更优越的稳定性和计算精度.

关键词: 随机微分方程, 龙格库塔方法, 均方稳定性

Abstract: We discussed threestage semiimplicit stochastic RungeKutta methods for Stratonovich stochastic differential equations. The meansquare stability properties of the methods were examited. The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stochastic differential equations.

Key words: stochastic differential equations, RungeKutta method, meansquare stability

中图分类号: 

  • O241.8