J4 ›› 2011, Vol. 49 ›› Issue (04): 633-637.

• 数学 • 上一篇    下一篇

具有O(nL)复杂性的Mehrotra型预估-矫正算法

刘长河1,2, 刘红卫1, 朱见广1   

  1. 1. 西安电子科技大学 数学系, 西安 710071; 2. 河南科技大学 数学与统计学院, 河南 洛阳 471003
  • 收稿日期:2010-09-06 出版日期:2011-07-26 发布日期:2011-08-16
  • 通讯作者: 刘红卫 E-mail:hwliu@mail.xidian.edu.cn

MehrotraType PredictorCorrector Algorithm withO(nL)Iteration Complexity

LIU Changhe1,2, LIU Hongwei1, ZHU Jianguang1   

  1. 1. Department of Mathematics, Xidian University, Xi’an 710071, China; 2. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471003, Henan Province, China
  • Received:2010-09-06 Online:2011-07-26 Published:2011-08-16
  • Contact: LIU Hongwei E-mail:hwliu@mail.xidian.edu.cn

摘要:

针对内点方法在理论和实践之间存在着计算效果好的算法在理论上具有较差复杂性的矛盾, 提出一种求解线性规划问题的Mehrotra型预估-矫正内点算法, 并证明了该算法的迭代复杂性是O(nL). 数值实验结果验证了算法的有效性.

关键词: 线性规划, 内点方法, Mehrotra型预估矫正算法, 宽邻域算法, 多项式复杂性

Abstract:

In interior point methods, there is an inconsistency between theory and practice: fast algorithms in practice may actually render
 worse complexity bounds. We proposed a new Mehrotratype predictorcorrector interior point algorithm for linear programming. The O(nL)iteration complexity of the algorithm was given, the same as the best complexity result for any interior point method. The numerical experiments show that this algorithm has a superior practical performance.

Key words:  linear programming, interior point methods, Mehrotratype predictorcorrector algorithm, wide neighborhood algorithm, polynomial complexity

中图分类号: 

  • O221.1