J4

• 数学 • 上一篇    下一篇

单位多圆盘上Bergman空间上的紧算子

程国正, 于涛   

  1. 浙江师范大学 数学系, 浙江省 金华 321004
  • 收稿日期:2005-11-11 修回日期:1900-01-01 出版日期:2006-09-26 发布日期:2006-09-26
  • 通讯作者: 于涛

Compact Operator on Bergman Spaces of the Unit Polydiscs

CHENG Guozheng, YU Tao   

  1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang Province, China
  • Received:2005-11-11 Revised:1900-01-01 Online:2006-09-26 Published:2006-09-26
  • Contact: YU Tao

摘要: 记Lpa(Dn)(p>1)为单位多圆盘Dn) 上p次可积 的解析函数全体. 利用多圆盘函数论及Schur估计, 研究Bergman空间Lpa(Dn)上有界算子S满足一定可积条件时的紧性刻画, 证明了S为紧的当且仅当其Berezin变换在多圆盘的边界趋于零. 所得结果是对单复变时算子紧性的一个刻画在多复变情形下的推广.

关键词: Bergman空间, Berezin变换, 紧算子

Abstract: Let Lpa(Dn) denote the analytic functions on the unit polydisk Dn that are also pintegrable. By using polydisk function theory and Schur estimate, we studied the charactarization of compactness of a bounded operator S on the Bergman space Lpa(Dn) if S satisfied some integrable conditions, and proved that S is compact if and only if its Berezin transform vanishes on the boundary of the unit polydisk. We extended the description of operators’ compactness in one complex variable to that in several complex variables.

Key words: Bergman space, Berezin transform, compact operator

中图分类号: 

  • O177.1