J4

• 数学 • 上一篇    下一篇

具退化性的一类非线性扩散方程的正则化解

周文书1,2, 魏晓丹3   

  1. 1. 吉林大学 数学学院, 长春 130012; 2. 中山大学 数学与计算科学学院, 广州 510275;3. 东北大学 东软信息学院, 辽宁省 大连 116023
  • 收稿日期:2005-11-12 修回日期:1900-01-01 出版日期:2006-09-26 发布日期:2006-09-26
  • 通讯作者: 周文书

Solutions of Regularization for a Class ofNonlinear Diffusion Equations with Degeneracies

ZHOU Wenshu1,2, WEI Xiaodan3   

  1. 1. College of Mathematics, Jilin University, Changchun 130012, China;2. School of Mathematics and Computational Science, Sun Yat\|sen University, Guangzhou 510275, China;3. Neusoft Institute of Information, Northeastern University, Dalian 116023, Liaoning Province, China
  • Received:2005-11-12 Revised:1900-01-01 Online:2006-09-26 Published:2006-09-26
  • Contact: ZHOU Wenshu

摘要: 研究具退化性的一类非线性扩散方程的初边值问题. 基于弱解存在性的证明和消失粘性法, 引入了正则化解的概念, 优点是能够确保正则化解的惟一性, 而且在某些条件下又有存在性. 证明了正则化解的一个重要性质, 即解的支集关于时间的不变性; 并对此问题的一个特殊情形, 构造出其显示的正则化解. 最后, 应用能量估计方法, 研究了正则化解的长时间行为.

关键词: 退化性, 非线性扩散方程, 正则化解, 惟一性, 局部化, 长时间行为

Abstract: This paper concerns with the initial and boundary value problem for a nonlinear diffusion equation with degeneracies. Based on the proof of existence of weak solutions and vanishing viscosity method, the concept of solutions of regularization is introduced, the meirt of which is the uniqueness of solutions of regularization is guaranteed, moreover, under some conditions, the existence is also established. Subsequently, as a important property, the time invariance of support set of solutions of regularization is proved. Also an explicit solution of regularization to a special problem is constructed. Finally, by the method of energy estimation, a long time behavior of the solution of regularization is studied.

Key words: degeneracy, nonlinear diffusion equation, solution of regularization, uniqueness, localization, long time behavior

中图分类号: 

  • O175.26