吉林大学学报(理学版)

• 数学 • 上一篇    下一篇

一类双参数奇摄动边值问题的内层解

周克浩, 杨雪洁, 姚静荪   

  1. 安徽师范大学 数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2013-04-12 出版日期:2014-03-26 发布日期:2014-03-20
  • 通讯作者: 姚静荪 E-mail:jsyao@mail.ahnu.edu.cn

Inner Layer Solutions for a Class of Singularly PerturbedBoundary Value Problems with Two Parameters

ZHOU Kehao, YANG Xuejie, YAO Jingsun   

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui Province, China
  • Received:2013-04-12 Online:2014-03-26 Published:2014-03-20
  • Contact: YAO Jingsun E-mail:jsyao@mail.ahnu.edu.cn

摘要:

考虑一类具有双参数的二阶拟线性微分方程奇摄动内层问题, 在适当的条件下, 利用微分不等式及内部层校正理论构造了该问题的上、 下解, 证明了解的存在性, 并给出了解的渐近估计.

关键词: 奇摄动, 内层, 双参数, 微分不等式

Abstract:

Singularly perturbation inner layer problems for a class of quasilinear second order differential equation with two parameters were discussed. Under appropriate conditions, specific upper and lower solutions were constructed, then prove the existence of the solutions; and the asymptotic estimate of solutions was given according to the theory of differential inequality and the correction of interior layer.

Key words: singular perturbation, inner layer, two parameters, differential inequalities

中图分类号: 

  • O175.14