吉林大学学报(理学版) ›› 2018, Vol. 56 ›› Issue (6): 1423-1426.

• 数学 • 上一篇    下一篇

具有指数型二分性离散系统的反周期解

孟鑫   

  1. 吉林师范大学 数学学院, 吉林 四平 136000
  • 收稿日期:2018-03-19 出版日期:2018-11-26 发布日期:2018-11-26
  • 通讯作者: 孟鑫 E-mail:mqym@sina.cn

Antiperiodic Solutions for Discrete Systems with Exponential Dichotomy#br#

MENG Xin   

  1. College of Mathematics, Jilin Normal University, Siping 136000, Jilin Province, China
  • Received:2018-03-19 Online:2018-11-26 Published:2018-11-26

摘要: 考虑一类具有指数型二分性非线性离散系统的反周期解. 首先证明若齐次线性系统具有指数型二分性, 则对应非齐次线性系统存在反周期解; 然后借助该结论及Banach不动点定理, 给出非线性离散系统存在唯一反周期解的充分条件; 最后给出应用实例.

关键词: 指数型二分性, 反周期解, Banach不动点定理

Abstract: The author considered the antiperiodic solutions for a class of nonlinear discrete systems with exponential dichotomy. Firstly, it was proved that if the homogeneous linear system had exponential dichotomy, then the corresponding nonhomogeneous linear system had an antiperiodic solution. Secondly, by means of this conclusion and the Banach fixed point theorem, a sufficient condition for the existence and uniqueness of antiperiodic solutions for nonlinear discrete systems was given. Finally, an application example was given.

Key words: exponential dichotomy, antiperiodic solution, Banach fixed point theorem

中图分类号: 

  • O175.7