吉林大学学报(理学版) ›› 2019, Vol. 57 ›› Issue (04): 853-856.

• 数学 • 上一篇    下一篇

矩阵的特征值定位和非奇异性判定

桑彩丽, 赵建兴   

  1. 贵州民族大学 数据科学与信息工程学院, 贵阳 550025
  • 收稿日期:2018-08-04 出版日期:2019-07-26 发布日期:2019-07-11
  • 通讯作者: 赵建兴 E-mail:zhaojianxingmath@163.com

Eigenvalue Localization and Determination of Nonsingularity for Matrices

SANG Caili, ZHAO Jianxing   

  1. College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
  • Received:2018-08-04 Online:2019-07-26 Published:2019-07-11
  • Contact: ZHAO Jianxing E-mail:zhaojianxingmath@163.com

摘要: 通过将复方阵A分裂为A=sI-B(其中: s为任意复数; I为单位矩阵; B为复方阵), 利用矩阵非奇异性判定已有的方法, 得到了A的含有两个参数(s和正整数k)的特征值包含集和非奇异性的判定方法, 并证明所得特征值包含集和非奇异性判定方法比已有结果更精确、 更具一般性. 数值结果表明, 通过调节s和k, 可以对A的特征值进行更精确定位, 从而判定A的非奇异性.

关键词: 矩阵, 特征值, 定位, 非奇异性, 判定

Abstract: By splitting a complex square matrix A=sI-B, where s is an arbitrary complex number, I is the identity matrix and B is a complex square matrix, and by using an existing method of determination of nonsingularity for matrices, some eigenvalue inclusion sets and some methods of determination of nonsingularity for A with two parameters (s and a positive integer k) are obtained and proved to be more accurate and more general than some existing results. Numerical results show that by adjusting s and k, the eigenvalues of A  can be located  more accurate, and  the nonsingularity of A can be determined.

Key words: matrix, eigenvalue, localization, nonsingularity, determination

中图分类号: 

  • O151.2