吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 859-863.

• 数学 • 上一篇    下一篇

图2-2nP5和2-nK1,1,1,3完美匹配的计数

唐保祥1, 任韩2   

  1. 1. 天水师范学院 数学与统计学院, 甘肃 天水 741001; 2. 华东师范大学 数学系, 上海 200062
  • 收稿日期:2019-12-09 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 唐保祥 E-mail:tbx0618@sina.com

Perfect Matching Counts for 2-2nP5 and 2-nK1,1,1,3 Graphs

TANG Baoxiang1, REN Han2   

  1. 1. School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, Gansu Province, China;
    2. Department of Mathematics, East China Normal University, Shanghai 200062, China
  • Received:2019-12-09 Online:2020-07-26 Published:2020-07-16
  • Contact: TANG Baoxiang E-mail:tbx0618@sina.com

摘要: 把图2-2nP5和2-nK1,1,1,3的完美匹配按匹配一个固定顶点的边进行分类, 先求出每类完美匹配数目的递推关系式, 得到一组有相互联系的递推关系式, 再利用这组递推式之间的相互关系, 给出这两个图完美匹配数的计数公式.

关键词: 完美匹配, 分类, 递推式关系, 计数公式

Abstract: The perfect matchings of  2-2nP5 and 2-nK1,1,1,3 graphs were classified according to the edges that matched a fixed vertex. First, we found out  the recurrence relations of each kind of  perfect matching number, and obtained a set of recurrence relations 
which were related to each other. Then we used the  correlation between these recurrence relations to give the  counting formula of the perfect matching mumber  of these two graphs.

Key words: perfect matching, classification, recurrence relation, counting formula

中图分类号: 

  • O157.5