吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 931-936.

• 计算机科学 • 上一篇    下一篇

基于NSST与改进稀疏表示的医学图像融合方法

朱宏伟   

  1. 吉林农业科技学院 网络信息中心, 吉林 吉林 132101
  • 收稿日期:2019-12-27 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 朱宏伟 E-mail:zhw_cn@126.com

Medical Image Fusion Method Based on NSST and Improved Sparse Representation

ZHU Hongwei   

  1. Network Information Center, Jilin Agricultural Science and Technology University, Jilin 132101, Jilin Province, China
  • Received:2019-12-27 Online:2020-07-26 Published:2020-07-16
  • Contact: ZHU Hongwei E-mail:zhw_cn@126.com

摘要: 针对单一模态的医学图像无法为临床诊断提供全面、 互补信息的问题, 提出一种基于非下采样剪切波变换(NSST)与改进稀疏表示(ISR)的多模态医学图像融合方法. 首先用NSST分解工具将待融合图像分解为一个低频子带和若干个高频子带; 其次, 用ISR方法融合低频子带, 通过Sobel算子和引导滤波器去除低频子带的细节特征, 从而提高低频子带的融合效率, 同时对高频子带采用绝对值最大的融合规则进行融合; 最后, 将融合后的低频子带和高频子带进行逆NSST变换得到最终的融合图像. 实验结果表明, 该方法在主观视觉性能和客观评价上均优于其他对比融合方法.

关键词: 医学图像融合, 非下采样剪切波, 改进稀疏表示, 融合规则

Abstract: Aiming at the problem that singlemodality medical images could not provide comprehensive and complementary information for clinical diagnosis, the author proposed a multimodal medical image fusion method based on nonsubsampled shearlet transform (NSST) and improved sparse representation (ISR). Firstly, the NSST tool was used to decompose the source image into a low frequency subband and several high frequency subbands. Secondly, the ISR method was used to fuse the lowfrequency subbands, and the details of the lowfrequency subbands were removed by the sobel operator and the guided filter, thereby improving the fusion efficiency of the lowfrequency subbands. At the same time, the highfrequency subbands were fused by using the maximum absolute value fusion rule. Finally, the final fused image was obtained by the inverse NSST transform of the fused lowfrequency and highfrequency subbands. Experimental results show that proposed method is superior to other fusion methods in subjective visual performance and objective evaluation.

Key words: medical image fusion, nonsubsampled shearlet, improved sparse representation, fusion rule

中图分类号: 

  • TP391