吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 944-952.

• 计算机科学 • 上一篇    下一篇

基于量子自组织网络的水淹层识别方法

卢爱平1, 李建平1, 李盼池1, 范友贵2   

  1. 1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318; 
    2. 中国石油吉林油田公司, 吉林 松原 138000
  • 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 李建平 E-mail:leejp@126.com

WaterFlooded Layer Identification Method Based onQuantum Selforganizing Network

LU Aiping1, LI Jianping1, LI Panchi1, FAN Yougui2   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province,  China;
    2. Petrochina Jilin Oilfield Company, Songyuan 138000, Jilin Province, China
  • Online:2020-07-26 Published:2020-07-16
  • Contact: LI Jianping E-mail:leejp@126.com

摘要: 采用量子自组织网络方法, 解决油田测井解释中的水淹层识别问题. 首先, 构造储层特征指标集, 包括测井曲线的序列指标和单个数值指标. 对序列指标先采用离散Walsh滤波方法去除噪声, 然后取均值, 再与其他单个数值指标一起构造储层特征向量. 其次, 将储层特征向量转化为量子态描述, 提交量子自组织网络实施聚类. 最后将聚类收敛后的网络作为水淹层识别的数学模型, 应用于油田相似区块的水淹层识别中. 仿真实验结果表明, 该方法正确识别率比传统自组织聚类方法高6%.

关键词: 水淹层识别, 自组织网络, 量子自组织网络, Walsh滤波, 算法设计

Abstract: The quantum selforganizing network method was used to solve the problem of water-flooded layer identification in oil field logging interpretation. Firstly, the reservoir feature indicator set was constructed, including sequence indicators from the log curves and some single numerical indicators. For the sequence indicators, the discrete Walsh filtering method was first used to remove the noise in sequence indicators, then the average was taken, and then the reservoir feature vector was constructed together with other single numerical indicators. Secondly, the reservoir feature vectors were transformed into quantum state descriptions, and the quantum self-organizing networks were implemented clustering. Finally, the converged network was used as a mathematical model for waterflooded layer recognition in similar blocks of oil fields. The simulation results show that the accuracy of the proposed method is 6% higher than that of the traditional selforganizing clustering method.

Key words: waterflooded layer identification, selforganizing network, quantum selforganizing network, Walsh filtering, algorithm design

中图分类号: 

  • TP183