吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1047-1054.

• • 上一篇    下一篇

一类二阶拟线性瞬态方程组的Phragmén-Lindelof型二择性结果

李远飞1, 肖胜中2, 郭连红1, 曾鹏1
  

  1. 1. 广东财经大学华商学院 数据科学学院,  广州 511300;
    2. 广东农工商职业技术学院, 广州 510507
  • 收稿日期:2020-04-07 出版日期:2020-09-26 发布日期:2020-11-18
  • 通讯作者: 李远飞 E-mail:liqfd@163.com.

Phragmén-Lindelof Type Alternative Results for a Class of Second Order Quasilinear Transient Equations

LI Yuanfei1, XIAO Shengzhong2, GUO Lianhong1, ZENG Peng1   

  1. 1. School of Data Science, Huashang College Guangdong University of Finance & Economics, Guangzhou 511300, China;
    2. Guangdong AIB College, Guangzhou 510507, China
  • Received:2020-04-07 Online:2020-09-26 Published:2020-11-18

摘要: 考虑一类定义在三维半无穷柱体上的拟线性方程组, 其中假设方程的解在柱体的有限端满足非齐次条件, 在柱体的侧面上满足零边界条件. 通过对非线性项进行限制, 利用微分不等式技术, 给出该方程的解在3种不同柱体上的二择一定理, 并在衰减的情形下给出全能量的上界.

关键词: 拟线性方程, Phragmén-Lindelof型二择性, 微分不等式

Abstract: We considered a class of quasilinear equations defined on a three\|dimensional semi infinite cylinder, in which the solutions of the equations were assumed to satisfy the nonhomogeneous condition at the finite end of the cylinder and the zero boundary condition at the side of the cylinder. By limiting the nonlinear terms and  using  the differential inequality technique, we gave the alternative theorem of the solutions of the equations on three different cylinders, and gave  the upper bound of total energy in the case of decay.

Key words: quasilinear equation, Phragmén-Lindelof type alternative, differential inequality

中图分类号: 

  • O175.29