吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1100-1106.

• • 上一篇    下一篇

具有变系数四阶抛物方程的B样条有限元法

秦丹丹1,2, 唐鑫鑫1, 黄文竹3   

  1. 1. 空军航空大学 基础部, 长春 130022; 2. 吉林大学 数学学院, 长春 130012;3. 贵州医科大学 生物与工程学院, 贵阳 550025
  • 收稿日期:2020-02-27 出版日期:2020-09-26 发布日期:2020-11-18
  • 通讯作者: 黄文竹 E-mail:hwenzhu@gmc.edu.cn

B-Spline Finite Element Method for Fourth Order Parabolic Equations with Variable Coefficient

QIN Dandan1,2, TANG Xinxin1, HUANG Wenzhu3   

  1. 1. Department of Fundation, Aviation University of Air Force, Changchun 130022, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China;
    3. School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
  • Received:2020-02-27 Online:2020-09-26 Published:2020-11-18

摘要: 用三次B样条有限元法求解一类四阶主项带有变系数的抛物方程, 证明半离散格式解的有界性与收敛性. 关于时间变量的离散, 通过构造向后Euler格式, 得到全离散格式解的收敛阶为O(Δt+h4). 数值算例验证了理论分析结果及B样条有限元法的有效性.

关键词: 变系数, 四阶抛物方程, B样条, 有限元法

Abstract: We used the cubic B-spline finite element method to solve a class of fourth order parabolic equations with variable coefficient, and proved the boundness and convergence of the solution of the semi-discrete scheme. For the discretization of time variable, the backward Euler scheme was
 constructed, and the convergence order of the solution of the fully discrete scheme was O(Δt+h4). A numerical experiment verified the effectiveness of theoretical analysis results and the B-spline finite element method.

Key words: variable coefficient, fourth order parabolic equation, B-spline, finite element method

中图分类号: 

  • O241.82