吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (5): 1135-1141.

• • 上一篇    下一篇

求解渗流方程的一种修正的中心型有限体积法

陈国芳1, 吴丹2, 吕俊良2   

  1. 1. 吉林省教育学院 民族教育学院, 长春 130022; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2020-01-22 出版日期:2020-09-26 发布日期:2020-11-18
  • 通讯作者: 吕俊良 E-mail:lvjl@jlu.edu.cn

A Modified Cel-Centered Finite Volume Method for Solving Filtration Equations

CHEN Guofang1, WU Dan2, LV Junliang2   

  1. 1. College of Minority Education, Jilin Provincial Institute of Education, Changchun 130022, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2020-01-22 Online:2020-09-26 Published:2020-11-18

摘要: 针对数值求解渗流方程时, 使用标准有限体积法出现数值界面不能有效向前传播的“数值热障”现象, 提出一种修正的有限体积法, 该方法扩散系数的取值采用密度变量在两个相邻单元的代数平均值. 数值实验结果表明, 新格式可有效避免“数值热障”现象.

关键词: 有限体积法, 渗流方程, 非线性迭代, Barenblatt解

Abstract: When the filtration equation was solved numerically by the standard finite volume method, numerical solutions suffered from the “numerical hot barrier” phenomenon, in which numerical interface could not propagate forward correctly, we proposed a modified finite volume method. The diffusion coefficient of the method was the algebraic mean of the values of density variable at two neighbour elements. The results of numerical experiments show that the new scheme can effectively avoid “numerical hot barrier” phenomenon.

Key words: finite volume method, filtration equation, nonlinear iteration, Barenblatt solution

中图分类号: 

  • O241.82