吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (1): 1-6.

• •    下一篇

具有变指数的退化抛物方程解的唯一性

詹华税1, 袁洪君2   

  1. 1. 厦门理工学院 应用数学学院, 福建 厦门 361024; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2020-08-27 出版日期:2021-01-26 发布日期:2021-01-26
  • 通讯作者: 袁洪君 E-mail:hjy@jlu.edu.cn.

Uniqueness of Solutions to Degenerate Parabolic Equation with Variable Exponents

ZHAN Huashui1, YUAN Hongjun2   

  1. 1. School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, Fujian Province, China;
    2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2020-08-27 Online:2021-01-26 Published:2021-01-26

摘要: 考虑具有变指数的退化抛物方程ut=div(ρα|a(u))|p(x)-2a(u))+g(x)div(b(u))弱解的存在唯一性问题, 其中ρ(x)=dist(x,Ω)是其到边界的距离函数, a(s)是一个严格单调上升的函数. 通过选取合适的检验函数证明在无边界值条件情形下该方程弱解的唯一性成立.

关键词: 退化抛物方程, 变指数, 边界值条件, 稳定性, 唯一性

Abstract: The existence and the uniqueness of weak solutions to a degenerate parabolic equation with variable exponents ut=div(ρα|a(u))|p(x)-2a(u))+g(x)div(b(u)) is considered, where ρ(x)=dist(x,Ω) is the distance function from the boundary, a(s) is a strictly monotone increasing function. By choosing a suitable test function, the uniqueness of weak solution of the equation is proved under the condition of no boundary value.

Key words: degenerate parabolic equation, variable exponent, boundary value condition, stability, uniqueness

中图分类号: 

  • O175.26