吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (1): 107-114.

• • 上一篇    下一篇

基于出行偏好和路径长度的路径规划方法

李建伏, 王思博, 宋国平   

  1. 中国民航大学 计算机科学与技术学院, 天津 300300
  • 收稿日期:2020-01-22 出版日期:2021-01-26 发布日期:2021-01-26
  • 通讯作者: 李建伏 E-mail:jianfu_lili@163.com

Path Planning Method Based on Routing Preference and Path Length

LI Jianfu, WANG Sibo, SONG Guoping   

  1. School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
  • Received:2020-01-22 Online:2021-01-26 Published:2021-01-26

摘要: 针对基于最短路径的路径规划方法只关注路径长度, 而基于轨迹的路径规划方法过度依赖用户偏好的问题, 提出一种同时考虑用户出行偏好和路径长度的路径规划方法. 首先, 利用长短期记忆模型从历史出行轨迹中提取用户的出行偏好; 其次, 采用Markov链Monte Carlo采样技术将用户的出行偏好引入启发式搜索算法A*中, 在道路网络中搜索得到符合用户出行偏好且较短的路径; 最后, 以北京市路网和出租车轨迹数据作为测试数据, 将该方法与基于最短路径的规划方法和基于轨迹的路径规划方法进行实验对比. 实验结果表明, 该路径规划方法更稳定, 并且其规划的路径具有较高的准确度、 较短的行驶距离和行程时间.

关键词: 路径规划; 轨迹; 长短期记忆模型; A*算法, Markov链

Abstract: Aiming at the problem that the path planning methods based on the shortest path only focused on path length, while trajectory-based path planning methods excessively depended on users’ preference, we proposed a path planning method based on both routing preferences and path length. Firstly, the long short-term memory model was used to extract users’ routing preferences from the historical routing trajectory. Secondly, Markov chain Monte Carlo sampling technology was used to introduce the users’ routing preferences into the heuristic search algorithm A* to search for the shorter path in line with users’ routing preferences in the road network. Finally, taking Beijing road network and taxi trajectories as test data, the method was compared with the shortest path based planning method and the trajectory based path planning mehtod. The experimental results show that the path planning method is more stable, and the path planning has higher accuracy, shorter travel distance and travel time.

Key words: path planning, trajectory, long short-term memory, A* algorithm, Markov chain

中图分类号: 

  • TP391