吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (2): 207-212.

• • 上一篇    下一篇

一类非齐次核的最佳Hilbert型积分不等式的搭配参数条件

洪勇1, 吴春阳1, 陈强2   

  1. 1. 广东白云学院 数学教研室, 广州 510450; 2. 广东第二师范学院 计算机科学系, 广州 510303
  • 收稿日期:2020-07-29 出版日期:2021-03-26 发布日期:2021-03-26
  • 通讯作者: 洪勇 E-mail:hongyonggdcc@yeah.net

Matching Parameter Conditions for the Best Hilbert-Type Integral Inequality with a Class of Non-homogeneous Kernels

HONG Yong1, WU Chunyang1, CHEN Qiang2   

  1. 1. Department of Mathematics, Guangdong Baiyun University, Guangzhou 510450, China;
    2. Department of Computer Science, Guangdong University of Education, Guangzhou 510303, China
  • Received:2020-07-29 Online:2021-03-26 Published:2021-03-26

摘要: 首先利用权函数方法, 考虑如何确定搭配参数, 使具有非齐次核G(xλ1yλ2)(λ1λ2>0)的Hilbert型积分不等式具有最佳常数因子; 其次给出最佳搭配参数的充分必要条件及快速判定最佳常数因子的判别式; 最后讨论最佳搭配参数在积分算子理论中的应用.

关键词: 非齐次核, Hilbert型积分不等式, 最佳常数因子, 最佳搭配参数, 判别式, 算子范数, 有界算子

Abstract: Firstly, by using the weight function method, we considered how to determine the matching parameters so that the Hilbert-type integral inequalities with non-homogeneous kernel G(xλ1yλ2)(λ1λ2>0) had the best constant factor. Secondly, we gave the necessary and sufficient conditions for the best matching parameter and the discriminant for fast determination of the best constant factor. Finally, we discussed applications of the best matching parameter in the integral operator theory.

Key words: non-homogeneous kernel, Hilbert-type integral inequality, the best constant factor, the best matching parameter, discriminant, operator norm, bounded operator

中图分类号: 

  • O178