吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 451-459.

• • 上一篇    下一篇

一类右端不连续的奇异摄动拟线性Robin边值问题的内部层解

LIUBAVIN Aleksei, 倪明康, 杨倩   

  1. 华东师范大学 数学科学学院, 上海 200062
  • 收稿日期:2021-01-25 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 倪明康 E-mail:xiaovikdo@163.com

Solutions of Internal Layers for a Class of Singularly Perturbed Quasilinear Robin Boundary Value Problems with Discontinuous Right-Hand Side

LIUBAVIN Aleksei, NI Mingkang, YANG Qian   

  1. School of Mathematical Sciences, East China Normal University, Shanghai 200062, China
  • Received:2021-01-25 Online:2021-05-26 Published:2021-05-23

摘要: 考虑一类具有Robin边值条件的右端不连续的奇摄动拟线性微分方程. 首先, 在给定条件下构造在间断曲线附近具有内部层的光滑解的渐近表达式; 其次, 基于缝接法证明该问题解的存在性, 并给出余项估计; 最后, 用数值算例验证该方法的有效性.

关键词: 奇摄动, 渐近展开, 内部层, Robin边值条件

Abstract: We consider a class of singularly perturbed quasilinear differential equation with Robin boundary value conditions and discontinuous right-hand side. Firstly, under the given conditions, the asymptotic expression of a smooth solution with an internal layer in the neighborhood of the discontinuous curve is constructed. Secondly, based on the matching technique, the existence of such solution is proved, and the remainder estimation is given. Finally, the effectiveness of the method is verified by a numerical example.

Key words: singular perturbation, asymptotic expansion, internal layer, Robin boundary value condition

中图分类号: 

  • O175.14