吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 555-558.

• • 上一篇    下一篇

分数阶非线性迭代方程的周期解

李翠英1, 吴睿2, 程毅1   

  1. 1. 渤海大学 数学科学学院, 辽宁 锦州 121013; 2. 长春财经学院 数学教研部, 长春 130122
  • 收稿日期:2020-12-18 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 吴睿 E-mail:wurui0221@sina.com

Periodic Solutions for a Fractional Nonlinear Iterative Equations

LI Cuiying1, WU Rui2, CHENG Yi1   

  1. 1. College of Mathematical Sciences, Bohai University, Jinzhou 121013, Liaoning Province, China;
    2. Department of Mathematics, Changchun University of Finance and Economics, Changchun 130122, China
  • Received:2020-12-18 Online:2021-05-26 Published:2021-05-23

摘要: 考虑一类Caputo型分数阶导数意义下非线性迭代微分方程的周期问题, 在非线性项满足单边Lipschtiz条件下, 应用Leray-Schauder不动点定理和拓扑度理论, 证明该类非线性分数阶迭代微分方程解的存在性和唯一性.

关键词: 存在性, 唯一性, 分数阶, 迭代方程

Abstract: We considered the periodic problem of a class of nonlinear iterative differential equation in the sense of Caputo type fractional derivative. Under one sided-Lipschtiz conditions on nonlinear term, the existence and uniqueness of solution for the nonlinear fractional iterative differential equations is proved by applying the Leray-Schauder fixed point theorem and topological degree theory.

Key words: existence, uniqueness, fractional order, iterative equation

中图分类号: 

  • O175.14