吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 619-626.
张志宏, 刘传领
ZHANG Zhihong, LIU Chuanling
摘要: 针对深度学习网络在网络流量预测建模过程中的参数优化难题, 以改善网络流量预测结果为目标, 提出一种基于改进灰狼算法优化深度学习网络的网络流量预测模型. 首先, 收集网络流量历史数据, 并对数据进行相空间重构、 归一化等预处理; 其次, 引入灰狼算法快速搜索到全局最优深度学习网络的相关参数, 并根据最优参数对预处理后的网络流量历史数据进行学习, 建立能挖掘网络流量历史数据变化规律的预测模型; 最后, 与其他算法优化深度学习网络的网络流量预测模型进行对比分析. 实验结果表明, 基于改进灰狼算法优化深度学习网络的网络流量预测精度超过90%, 远高于其他对比模型, 且预测建模过程的建模时间少于对比模型, 可满足网络流量管理的高精度和实时性要求.
中图分类号: