吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 643-648.

• • 上一篇    下一篇

基于时间关系的Bi-LSTM+GCN因果关系抽取

郑余祥1, 左祥麟1,2, 左万利1,2, 梁世宁1, 王英1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2020-06-01 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 左祥麟 E-mail:zxl_jlu@163.com

Bi-LSTM+GCN Causality Extraction Based on Time Relationship

ZHENG Yuxiang1, ZUO Xianglin1,2, ZUO Wanli1,2, LIANG Shining1, WANG Ying1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2020-06-01 Online:2021-05-26 Published:2021-05-23

摘要: 针对传统时间关系只应用在机器学习方向关系抽取的问题, 提出一种基于序列标注实体识别的关系抽取方法. 先构建双向长短期记忆网络(Bi-LSTM)模型进行特征提取, 再输入时间关系作为特征矩阵进行图卷积. 实验结果表明: 时间关系能提高因果关系抽取效果, 并且包含时间关系的Bi-LSTM+GCN模型能有效抽取因果事件; 带有时间关系的Bi-LSTM+GCN模型获得因果关系的抽取结果优于传统方法因果关系的抽取结果.

关键词: 因果关系抽取, 时间关系, 序列标注, 图卷积, 双向长短期记忆网络(Bi-LSTM)

Abstract: Aiming at the problem that traditional time relationships were only applied in the direction of machine learning, we proposed a relationship extraction method based on sequence labeling entity recognition. We first constructed Bi-LSTM model for feature extraction, and then input time relationship as a characteristic matrix for graph convolution. The experimental results show that the time relationship can improve the effect of causality extraction, and the Bi-LSTM+GCN model containing time relationship can effectively extract causal events, and the results of causality extraction of the Bi-LSTM+GCN model with time relationship are better than those of traditional methods.

Key words: causality extraction, time relationship, sequence labeling, graph convolution, bidirectional long short-term memory (Bi-LSTM)

中图分类号: 

  • TP391