吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (4): 900-908.
李晓峰1, 李东2, 王妍玮3
LI Xiaofeng1, LI Dong2, WANG Yanwei3
摘要: 为提高医学超声图像在临床诊断的效果, 需先对图像进行优化检测和识别, 提出一种基于深度残差网络的医学超声图像多尺度边缘检测算法. 首先, 通过对原始医学超声图像进行自动标注, 构建医学超声图像灰度分布矩阵, 利用分布矩阵完成医学超声图像的多尺度分割; 其次, 构建医学超声图像多尺度边缘的轮廓模型, 提取多尺度图像边缘特征; 再次, 构建深度残差网络结构, 采用深度残差学习算法进行超声图像的底层图像信息融合; 最后, 对融合后的边缘图像数据进行多尺度边缘检测. 实验结果表明, 该算法的图像分割精度高, 特征提取准确率达80%以上, 图像边界中间断区检测效果较好, 边缘点查全性较高, 算法检测耗时短、收敛性强.
中图分类号: