吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (6): 1439-1444.
姜博1, 左万利1,2, 王英1,2
JIANG Bo1, ZUO Wanli1,2, WANG Ying1,2
摘要: 针对传统关系抽取模型依赖特征工程等机器学习方法, 存在准确率较低且规则较繁琐等问题, 提出一种BERT+BiLSTM+CRF方法. 首先使用BERT(bidirectional encoder representations from transformers)对语料进行预训练; 然后利用BERT根据上下文特征动态生成词向量的特点, 将生成的词向量通过双向长短期记忆网络(BiLSTM)编码; 最后输入到条件随机场(CRF)层完成对因果关系的抽取. 实验结果表明, 该模型在SemEval-CE数据集上准确率比BiLSTM+CRF+self-ATT模型提高了0.054 1, 从而提高了深度学习方法在因果关系抽取任务中的性能.
中图分类号: