吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (6): 1469-1480.

• • 上一篇    下一篇

基于函数尺度因子的有理分形插值及其应用

宋刚1, 杨晓梅1, 姜群2, 包芳勋1, 张云峰2   

  1. 1. 山东大学 数学学院, 济南 250100; 2. 山东财经大学 计算机科学与技术学院, 济南 250014
  • 收稿日期:2020-09-10 出版日期:2021-11-26 发布日期:2021-11-26
  • 通讯作者: 包芳勋 E-mail:fxbao@sdu.edu.cn

Rational Fractal Interpolation Based on Function Scaling Factors and Its Application

SONG Gang1, YANG Xiaomei1, JIANG Qun2, BAO Fangxun1, ZHANG Yunfeng2   

  1. 1. School of Mathematics, Shandong University, Jinan 250100, China; 
    2. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
  • Received:2020-09-10 Online:2021-11-26 Published:2021-11-26

摘要: 首先, 提出一种用于曲线建模的具有函数尺度因子的有理分形插值函数, 该函数能精确地刻画自相似较弱的不规则数据; 其次, 讨论分形曲线的稳定性、 收敛性及计盒维数. 实验结果表明, 该方法相比于三次样条插值、 函数尺度因子多项式分形插值、 常数尺度因子有理分形插值, 更适用于重建真实数据与不规则数据.

关键词: 有理样条, 分形插值, 函数尺度因子, 曲线建模

Abstract: Firstly, we proposed a rational fractal interpolation functions with function scaling factors for curve modeling, which could accurately characterize irregular data with weak self-similarity. Secondly, we discussed the stability, the convergence and box-dimension of fractal curves. The experimental results show that the proposed method performs better than cubic spline interpolation, polynomial fractal interpolation with function scaling factors and rational fractal interpolation with constant vertical scaling factors, which is more suitable for reconstructing real data and irregular data.

Key words: rational spline, fractal interpolation, function scaling factor, curve modeling

中图分类号: 

  • O174.1