吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (4): 767-774.

• •    下一篇

带非线性边界条件的一类离散梁方程正解的存在性

景证棋, 路艳琼   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2021-09-16 出版日期:2022-07-26 发布日期:2022-07-26
  • 通讯作者: 路艳琼 E-mail:luyq8610@126.com

Existence of Positive Solutions for a Class of Discrete Beam Equations with Nonlinear Boundary Conditions

JING Zhengqi, LU Yanqiong   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2021-09-16 Online:2022-07-26 Published:2022-07-26

摘要: 用Krasnoselskii不动点定理给出带非线性边界条件的一类离散梁方程正解的存在性结果, 其中: λ>0为参数; h: [2,T]Z→[0,∞)为函数; f: (0,∞)→R连续且在u=0处允许有奇性, 在u=∞处超线性增长.

关键词: 非线性边界条件, 正解, Lebesgue控制收敛定理, 超线性增长

Abstract: By using the fixed-point theorem of Krasnoselskii, we give the existence of positive solutions for a class of discrete beam equations with nonlinear boundary conditions, where λ>0 is a parameter, h: [2,T]Z→[0,∞) is function, f: (0,∞)→R is continuous, and allows singularity at u=0, grows superlinearly at u=∞.

Key words: nonlinear boundary condition, positive solution, Lebesgue dominated convergence theorem, superlinear growth

中图分类号: 

  • O175.8