吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1251-1258.

• • 上一篇    下一篇

具有Choquard项的分数阶Kirchhoff型方程解

于雪, 桑彦彬, 韩志玲   

  1. 中北大学 数学学院, 太原 030051
  • 收稿日期:2021-11-16 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 桑彦彬 E-mail:sangyanbin@126.com

Solutions to  Fractional Kirchhoff-Type Equations with  Choquard Term

YU Xue, SANG Yanbin, HAN Zhiling   

  1. School of Mathematics, North University of China, Taiyuan 030051, China
  • Received:2021-11-16 Online:2022-11-26 Published:2022-11-26

摘要: 考虑分数阶Choquard型Kirchhoff临界问题微分方程解的存在性. 首先, 引入Hardy-Littlewood-Sobolev嵌入定理, 并结合Nehari流形方法及与问题相关的能量泛函纤维映射, 证明该方程在参数λ足够小时非平凡解的存在性; 其次, 利用Ekeland变分原理得到泛函具有(PS)序列, 再选取适当的参数λ, 结合截断方法和山路引理证明其紧性条件成立; 最后, 利用分数阶的集中紧性原理建立该方程非平凡解的存在性.

关键词: Choquard方程, 分数阶, 临界指数, Hardy-Littlewood-Sobolev不等式, 非平凡解

Abstract: We considered the existence of solutions of differential equations for fractional Choquard type Kirchhoff critical problems. Firstly, Hardy-Littlewood-Sobolev embedding theorem was introduced, and combined with Nehari manifold method and fibbing maps of energy functional related to the problem, the existence of nontrivial solution of the equation was proved when the parameter λ was small enough. Secondly, the functional had (PS) sequence was obtained by Ekeland variational principle, and then the appropriate parameter λ was selected. Combined with the truncation method and mountain pass theorem, the compactness 
condition was proved to be true. Finally, the existence of nontrivial solutions of the above equations was established by using the fractional concentration-compactness principle.

Key words: Choquard equations, fractional, critical exponent, Hardy-Littlewood-Sobolev inequality, nontrivial solution

中图分类号: 

  • O175.8