吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1349-1355.

• • 上一篇    下一篇

改进多尺度特征的YOLO_v4目标检测方法

欧阳继红1,2, 王梓明1, 刘思光1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;
    2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2021-12-24 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 欧阳继红 E-mail:ouyj@jlu.edu.cn

YOLO_v4 Object Detection Method with Improved Multi-scale Features

OUYANG Jihong1,2, WANG Ziming1, LIU Siguang1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2021-12-24 Online:2022-11-26 Published:2022-11-26

摘要: 针对YOLO_v4模型因颈部网络串行连接的特征会逐渐被稀释, 从而影响模型性能的问题, 提出一种改进多尺度特征的YOLO_v4目标检测方法. 该方法通过引入中间层的方式重构了YOLO_v4颈部网络结构, 再通过中间层参与后续特征融合实现特征跨级连接, 并使用可通过网络学习的参数作为特征间的平衡因子进行特征加权融合. 在数据集VOC-2007和VOC-2012上的实验结果表明, 该方法可使模型平均精度提高1.3%, 并可有效提升模型对不同目标的检测能力.

关键词: 目标检测, 深度学习, 多尺度特征, 加权融合

Abstract: Aiming at the problem that the YOLO_v4 model would be gradually  diluted due to the features of serial connection of the neck network, which affected the performance of the model, we proposed a YOLO_v4 object detection method with improved multi-scale features. The method  reconstructed the YOLO_v4 neck network structure   by introducing an intermediate layer, and then used the intermediate layer to participate in the subsequent feature fusion to realize the cross-level connection of features, and used the parameters that could be learned through the network as the balance factor between the features to perform  feature weighted fusion. The experimental results on the VOC-2007 and VOC-2012 datasets show that the proposed  method  can improve the average accuracy of the model by 1.3%, which can effectively improve the detection ability of the model for different targets.

Key words: object detection, deep learning, multi-scale feature, weighted fusion

中图分类号: 

  • TP391.41