吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1363-1369.

• • 上一篇    下一篇

基于注意力机制的航空图像旋转框目标检测

常洪彬, 李文举, 李文辉   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2021-12-28 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 李文辉 E-mail:liwh@jlu.edu.cn

Rotated Object Detection  in Aerial Images Based on Attention Mechanism

CHANG Hongbin, LI Wenju, LI Wenhui   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012,  China
  • Received:2021-12-28 Online:2022-11-26 Published:2022-11-26

摘要: 针对在航空遥感图像目标检测中, 航空图像在俯视图下呈任意方向排列, 存在图像尺寸大、方向任意和背景复杂等问题, 为能在复杂背景的航空图像中仍有较好的检测结果, 提出一种基于注意力机制的旋转框航空图像目标检测模型. 该模型首先采用RetinaNet作为基线模型, 在原有检测器结构的基础上, 增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE), 用于捕获全局语义信息和通道关系, 并预测粗糙包围盒与分类分数; 最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理, 进一步提升检测精度, 得到最后的分类和回归结果. 实验结果表明, 该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%, 优于其他先进的旋转框目标检测方法.

关键词: 目标检测, 航空图像, 注意力机制, 深度学习

Abstract: In the object detection of aerial remote sensing images, aerial images were arranged in any direction under the overhead view, which had problems  such as large image size, arbitrary direction and complex background. In order to get better detection results in aerial images with complex backgrounds, we proposed a rotated object detection model in aerial images based on the attention mechanism. Firstly, RetinaNet was used as the baseline model, on the basis of  the original detector structure, additional  angle parameter was added to adapt to the  rotated object detection. Secondly, we proposed  a new channel semantic extracting (CSE)  attention module to  capture global semantic information and the channel relationship, and predicted the coarse bounding box and classification score.  Finally, the feature alignment and the improved Fast R-CNN detector head were used for fine processing to  further improve the detection accuracy and obtain the final classification and regression results. The experimental results show that the detection accuracy of this method on the public aerial remote sensing  DOTA dataset reaches 77.71%, which is superior to  other advanced rotated object detection methods.

Key words: object detection, aerial image, attention mechanism, deep learning

中图分类号: 

  •