吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (1): 94-100.

• • 上一篇    下一篇

基于语义特征提取与层次结构的问题生成方法

白诗瑶1, 吕佳键2, 彭涛1,3, 刘露2,3, 崔海1   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;   2. 吉林大学 软件学院, 长春 130012; 3. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2021-11-19 出版日期:2023-01-26 发布日期:2023-01-26
  • 通讯作者: 彭涛 E-mail:tpeng@jlu.edu.cn

Question Generation Method Based on Semantic Feature Extraction and Hierarchical Structure

BAI Shiyao1, LV Jiajian2, PENG Tao1,3, LIU Lu2,3, CUI Hai1   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. College of Software, Jilin University, Changchun 130012, China;  3. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2021-11-19 Online:2023-01-26 Published:2023-01-26

摘要: 针对传统端到端模型在输入文本语义较复杂情况下生成的问题普遍存在语义不完整的情形, 提出一种基于语义特征提取的文本编码器架构. 首先构建双向长短时记忆网络获得基础的上下文信息, 然后采用自注意力机制及双向卷积神经网络模型分别提取语义的全局特征和局部特征, 最后设计一种层次结构, 融合特征及输入自身信息得到最终的文本表示进行问题生成. 在数据集SQuAD上的实验结果表明, 基于语义特征提取与层次结构进行问题生成效果显著, 结果明显优于已有方法, 并且语义特征提取和层次结构在任务的各评价指标上均有提升.

关键词: 问题生成, 双向长短时记忆网络, 卷积神经网络, 自注意力机制, 层次结构

Abstract: Aiming at  the problem that when the semantics of the input text were relatively complex, traditional end-to-end models generated questions with incomplete semantics,  we proposed a text encoder architecture based on semantic feature extraction. Firstly, we constructed bidirectional long short-term memory network to obtain  basic contextual information. Secondly,  self-attention mechanism was used to extract global features of semantics and bidirectional convolutional neural network model was used to extract local features of semantics respectively. Finally, we designed a hierarchical structure to merge the features and input their own information  to obtain the final text representation for question generation. Experimental results on the SQuAD dataset show that the question generation based on semantic feature extraction and hierarchical structure are significantly effective, and the results are better than the existing methods. Moreover, semantic feature extraction and hierarchical structure are improved  in each evaluation index of the task.

Key words: question generation, bidirectional long short-term memory network, convolutional neural network, self-attention mechanism, hierarchical structure

中图分类号: 

  • TP391