|
基于深度强化学习的移动机器人视觉图像分级匹配算法
李晓峰, 任杰, 李东
吉林大学学报(理学版). 2023 (1):
127-135.
摘要
(
368 )
PDF(2201KB)
(
203
)
针对传统移动机器人视觉图像分级匹配算法只能完成粗匹配, 导致最终匹配精度较低、 匹配时间较长等问题, 提出一种基于深度强化学习的移动机器人视觉图像分级匹配算法. 首先, 利用深度强化学习网络结构中的策略网络和价值网络, 共同指导浮动图像按正确方向移至参考图像; 其次, 在粗匹配过程中通过设计奖赏函数, 实现颜色特征粗匹配; 最后, 在粗匹配基础上, 利用改进尺度不变特征变换算法提取待匹配的图像局部特征, 按相似度进行移动机器人视觉图像分级匹配. 实验结果表明, 该算法可有效实现图像的粗匹配与精匹配, 在不同视角与尺度情况下特征检测的稳定性均较高, 匹配精度高、 时间短, 匹配后的图像质量较好, 提高了移动机器人的实际应用效果.
相关文章 |
计量指标
|