吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 221-227.

• • 上一篇    下一篇

变系数二阶常微分系统Neumann边值问题正解的存在性

孙晓玥   

  1. 西安电子科技大学 数学与统计学院, 西安 710126
  • 收稿日期:2022-05-13 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 孙晓玥 E-mail:sxy437760307@163.com

Existence of Positive Solutions of Neumann Boundary Value Problems for Second Order Ordinary Differential Systems with Variable Coefficients

SUN Xiaoyue   

  1. School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
  • Received:2022-05-13 Online:2023-03-26 Published:2023-03-26

摘要: 用Schauder不动点定理和拓扑度理论研究变系数二阶常微分系统Neumann边值问题正解的存在性, 其中: f,g: [0,1]×R→R连续, 且f(x,0)<0, g(x,0)<0; a,b∈C([0,1],[0,∞)), 且在[0,1]的任何子区间上不恒为0.  结果表明, 在适当的条件下, 存在λ0>0, 使得当0<λ<λ0时, 该问题至少有一个正解.

关键词: 变系数, 拓扑度理论, 半正问题

Abstract: By using the Schauder fixed point theorem and topological degree theory, the author studies the existence of positive solutions of Neumann boundary value problems for second order ordinary differential systems with variable coefficients, where f,g: [0,1]×R→R are continuous functions, and f(x,0)<0, g(x,0)<0; a,b∈C([0,1],[0,∞)) are not always 0 on any subinterval of [0,1]. The result shows that under suitable conditions, there exists λ0>0 such that the problem has at least one positive solution for 0<λ<λ0.

Key words: variable coefficient, topological degree theory, semi-positone problem

中图分类号: 

  • O175.8