吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 303-309.

• • 上一篇    下一篇

基于变限积分法的非线性Schrodinger方程的数值格式

张燕, 冯立新   

  1. 黑龙江大学 数学科学学院, 哈尔滨 150080
  • 收稿日期:2022-07-04 出版日期:2023-03-26 发布日期:2023-03-26

Numerical Scheme of Nonlinear Schrodinger Equation Based on Variable Limit Integral Method

ZHANG Yan, FENG Lixin   

  1. School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China
  • Received:2022-07-04 Online:2023-03-26 Published:2023-03-26
  • Contact: 冯立新 E-mail:fenglixin@hlju.edu.cn

摘要: 首先, 利用变限积分法和四阶Runge-Kutta法分别离散含五次项的非线性Schrodinger方程的空间和时间变量, 并构造初边值问题的全离散格式; 其次, 在理论上证明其数值解的有界性、 存在唯一性以及收敛阶; 最后, 用数值模拟验证理论分析的有效性.

关键词: Schrodinger方程, 变限积分法, 四阶Runge-Kutta法, 收敛性分析

Abstract: Firstly, the variable limit integral method and the fourth-order Runge-Kutta method were used to discretize the spatial and temporal variables of a nonlinear Schrodinger equation with a fifth order term, respectively, and a fully-discrete scheme for the initial boundary value problem was constructed. Secondly, we theoretically proved the boundedness, existence, uniqueness and the order of convergence of the numerical solution. Finally, the numerical simulations verified the validity of the theoretical analysis.

Key words: Schrodinger equation, variable integral method, fourth-order Runge-Kutta method, convergence analysis

中图分类号: 

  • O241.82