吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 338-346.

• • 上一篇    下一篇

基于LightGBM的天然气管道周围滑坡灾害预测方法

张博1, 向旭2, 贾俊龙2, 张学洪1, 李春奇3, 彭君2   

  1. 1. 国家管网集团川气东送天然气管道有限公司, 武汉 430079;
    2. 吉林大学 软件学院, 长春 130012; 3. 中石化天然气分公司, 北京 100029
  • 收稿日期:2022-05-20 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 彭君 E-mail:pengjun@jlu.edu.cn

Landslide Disaster Prediction Method Around Natural Gas Pipeline Based on LightGBM

ZHANG Bo1, XIANG Xu2, JIA Junlong2, ZHANG Xuehong1, LI Chunqi3, PENG Jun2   

  1. 1. Pipe China Group Sichuan East Natural Gas Transmission Company, Wuhan 430079, China;
    2. College of Software, Jilin University, Changchun 130012, China; 3. Sinopec Tianranqi Company, Beijing 100029, China
  • Received:2022-05-20 Online:2023-03-26 Published:2023-03-26

摘要: 针对天然气管道周围滑坡灾害预测中的数据缺失和特征数量少的问题, 采用基于LightGBM框架实现的梯度提升决策树算法, 通过插值
法补齐缺失数据, 利用历史特征数据生成近期特征和远期特征, 得到影响斜坡演变过程各因素的重要性排序及算法最优参数集合, 实现对天然气管道周围滑坡灾害的有效预测. 结果表明, 在对天然气管道周围滑坡灾害进行预测中, 该方法相比XGBoost模型具有更高的准确率, 同时处理速度也更快, 证明了LightGBM算法在滑坡灾害预测方面应用的可行性和有效性.

关键词: LightGBM框架, 滑坡, 预警预报, 机器学习, 人工智能

Abstract: Aiming at  the problems of missing data and small number of features in landslide disaster prediction around natural gas pipelines, 
the gradient boosting decision tree algorithm based on LightGBM framework was adopted to  supplement missing data by interpolation,  and short-term and long-term features were  generated by using the historical feature data to obtain the importance ranking of various factors affecting the slope evolution process and the optimal parameter set of the algorithm, so as to realize the effective prediction of landslide disasters around natural gas pipelines. The results show that  this method has higher accuracy and faster processing speed than XGBoost model  in the prediction of landslide disasters around the pipeline, which proves that LightGBM algorithm is feasible and effective in landslide disaster prediction.

Key words: LightGBM framework, landslide, early-warning and forecast, machine learning, artificial intelligence

中图分类号: 

  • TP391.41