吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 362-370.

• • 上一篇    下一篇

一种非对称的轻量级图像盲去模糊网络

张玉波, 王建阳, 韩爽, 王冬梅   

  1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318
  • 收稿日期:2022-01-04 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 王建阳 E-mail:wjy971013@163.com

An Asymmetric Lightweight Image Blind Deblurring Network

ZHANG Yubo, WANG Jianyang, HAN Shuang, WANG Dongmei   

  1. School of Electrical & Information Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
  • Received:2022-01-04 Online:2023-03-26 Published:2023-03-26

摘要: 针对现有图像去模糊算法存在细节模糊不清、 计算资源占用较大且图像处理速度较慢等问题, 提出一种轻量级的图像盲去模糊网络. 首先, 网络主体使用多尺度架构, 将不同分辨率的图像输入网络, 通过循环处理逐步优化细节; 其次, 设计非对称结构以加强编码器的特征提取能力和解码器的特征融合能力. 在编码器中, 提出混合多尺度卷积层和残差金字塔模块, 以强化特征提取并减少网络的参数量; 在解码器阶段, 使用跳跃连接引入深层语义, 并提出多尺度联合结构损失函数进行优化. 最后, 在两个广泛使用的数据集GoPro和Kohler上使用两种评价指标, 将该方法与其他经典方法进行性能对比. 实验结果表明, 该网络的去模糊效果优于传统方法以及其他经典深度学习方法, 不仅在峰值信噪比(PSNR)和结构相似性(SSIM)上均有一定提升, 且处理时间更短.

关键词: 图像处理, 盲去模糊, 金字塔结构, 多尺度网络

Abstract: Aiming at  the problems of blurred details, large computer resource occupation, and slow image processing for the existing image deblurring algorithms, we proposd a lightweight image blind deblurring network. Firstly, the main framework of the network used a multi-scale architecture to input images of different resolutions into the network, and gradually optimized the datails through cyclic processing.  Secondly, the asymmetric structure was designed to enhance the feature extraction ability of the encoder and the feature fusion ability of decoder. In the encoder, the mixed multi-scale convolutional layer and residual pyramid module were proposed to enhance feature extraction and  reduce the number of network parameters. In the decoder stage, deep semantics were introduced  by using jump linkage, and the multi-scale joint structure  loss function was proposed for optimization. Finally, we used two evaluation indicators to compare the performance of the method with the other classical methods on two widely used 
 GoPro and Kohler datasets. The experimental results show that the effect of the network  is better than that of the traditional methods and other classical deep learning mehtods. It not only improves the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), but also shortens the processing time.

Key words: image processing, blind deblurring, pyramid structure, multi-scale network

中图分类号: 

  • TP391.41