吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (3): 567-576.

• • 上一篇    下一篇

基于注意力特征融合的图像去雾算法

钱旭淼1, 段锦1,2, 刘举1, 陈广秋1, 刘高天1, 梁丽平1   

  1. 1. 长春理工大学 电子信息工程学院, 长春 130022; 2. 长春理工大学 空间光电技术研究所基础技术实验室, 长春 130022
  • 收稿日期:2022-06-11 出版日期:2023-05-26 发布日期:2023-05-26
  • 通讯作者: 段锦 E-mail:duanjin@vip.sina.com

Image Dehazing Algorithm Based on Attention Feature Fusion

QIAN Xumiao1, DUAN Jin1,2, LIU Ju1, CHEN Guangqiu1, LIU Gaotian1, LIANG Liping1   

  1. 1. College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; 2. Basic Technology Laboratory, Institute of Space Optoelectronic Technology, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2022-06-11 Online:2023-05-26 Published:2023-05-26

摘要: 针对雾天环境下图像采集过程中出现的细节丢失、 颜色失真、 对比度下降等问题, 提出一种基于注意力特征融合的图像去雾算法. 首先, 该算法采用注意力机制原理设计一个特征融合模块, 将通道注意力和像素注意力相结合, 利用不同通道的特征加权信息不同且雾霾在不同像素分布不均匀的特点, 根据特征图的重要程度为其赋予不同的权重, 解决了传统算法中雾气残留以及颜色失真的问题; 其次, 在网络的解码器中加入“增强-操作-减去”的增强策略, 解决了去雾后图像细节丢失的问题; 最后, 为更好地恢复图像质量, 采用混合损失函数对网络参数进行训练. 实验结果表明, 该算法在公开数据集RESIDE上较对比算法PSNR值提高了1.88 dB.

关键词: 图像去雾, 特征融合, 注意力机制, 增强模型, 雾霾天气

Abstract: Aiming at the problems of detail loss, color distortion and contrast reduction during image acquisition in foggy environments, we proposed an image dehazing algorithm based on attention feature fusion. Firstly, the algorithm adopted the principle of attention mechanism to design a feature fusion module that  combined channel attention and pixel attention. By using  the characteristics of different channel feature weighting information and uneven distribution of haze in different pixels,  different weights were assigned to the feature map according to the importance of the feature map, which solved the problems of fog residue and color distortion in the traditional  algorithms. Secondly, the enhancement strategy of “strength-operation-subtract” was added to the decoder of the network to solve the problem of image detail loss after dehazing. Finally,  in order to restore the image quality better,   the hybrid loss function was used to  train the network parameters. The experimental results show that the PSNR value of the proposed algorithm is improved by 1.88 dB compared with the comparison algorithm on the public  RESIDE dataset.

Key words: image dehazing, feature fusion, attention mechanism, enhanced model, haze weather

中图分类号: 

  • TP391.4