吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (3): 583-591.

• • 上一篇    下一篇

基于轻量级卷积神经网络的小样本虹膜图像分割

霍光1, 林大为1, 刘元宁2,3, 朱晓冬2,3, 袁梦2   

  1. 1. 东北电力大学 计算机学院, 吉林 吉林 132012;2. 吉林大学 计算机科学与技术学院, 长春 130012;3. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012

  • 收稿日期:2022-03-03 出版日期:2023-05-26 发布日期:2023-05-26
  • 通讯作者: 刘元宁 E-mail:liuyn@jlu.edu.cn

Small-Sample Iris Image Segmentation Based on Lightweight Convolutional Neural Networks

HUO Guang1, LIN Dawei1, LIU Yuanning2,3, ZHU Xiaodong2,3, YUAN Meng2   

  1. 1. School of Computer Science, Northeast Electric Power University, Jilin 132012, Jilin Province, China;
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    3. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2022-03-03 Online:2023-05-26 Published:2023-05-26

摘要: 针对复杂分割网络在小样本虹膜数据集上无法收敛的问题, 提出一个基于轻量级卷积神经网络的虹膜分割模型. 首先, 该模型采用基于深度可分离卷积的特征提取模块提取虹膜图像特征, 可在保持分割精度的同时显著减少模型参数; 其次, 在编码器和解码器之间引入一个高效的注意力机制模块, 可有效获取丰富的上下文信息, 并提高虹膜区域像素的可辨别性; 最后, 在虹膜数据库UBIRIS.V2上的实验结果表明, 该方法不仅在小样本数据库上性能优势显著, 且在大样本数据库上也具有较高的分割精度.

关键词: 虹膜分割, 深度学习, 虹膜识别, 小样本, 轻量级, 注意力机制

Abstract: Aiming at the problem that complex segmentation networks could not converge on small sample iris datasets, we proposed an iris segmentation model based on lightweight convolutional neural network. Firstly, the model used a feature extraction module based on depth-wise separable convolution to extract iris image features, which could  significantly reduce model parameters while maintaining segmentation accuracy. Secondly, an efficient attention mechanism module was introduced between the encoder and the decoder, which could effectively obtain rich context information and improve the discriminability of iris region pixels. Finally, the experimental results on the iris database UBIRIS.V2 show that the proposed method not only has significant performance advantages on small sample databases, but also has high segmentation accuracy on large sample databases.

Key words: iris segmentation, deep learning, iris recognition, small sample, lightweight, attention mechanism

中图分类号: 

  •