吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 745-752.

• • 上一篇    下一篇

 一类带简支梁条件的半正超线性梁方程的非平凡解

马琼,  王晶晶   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2022-09-15 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 王晶晶 E-mail:mathwang0712@163.com

Nontrivial Solutions for a Class of Semipositive Superlinear Beam Equations with Simply Supported Beam Condition

MA Qiong, WANG Jingjing   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2022-09-15 Online:2023-07-26 Published:2023-07-26

摘要: 在关于线性算子相应主特征值的一些条件下, 用拓扑度方法和不动点理论证明带简支梁边界条件的半正Euler-Bernoulli梁方程边值问题
非平凡解与正解的存在性.

关键词: 拓扑度, 不动点, 非平凡解和正解, Euler-Bernoulli梁方程

Abstract: Under some conditions about corresponding principal eigenvalue of  linear operator, we prove the existence of nontrivial solutions and positive solutions of boundary value problem for the semipositive nonlinear Euler-Bernoulli beam equations with simply supported beam boundary condition by using the topological degree method and the fixed point theory.

Key words: topological degree, fixed point, nontrivial solution and positive solution, Euler-Bernoulli beam equations

中图分类号: 

  • O175.8