吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 863-874.

• • 上一篇    下一篇

基于深度学习与狮群SVM算法的遥感场景分类

王李祺1, 侯宇超2, 高翔1, 谭秀辉1, 程蓉1, 王鹏1, 白艳萍1,2   

  1. 1. 中北大学 数学学院, 太原 030051; 2. 中北大学 信息与通信工程学院, 太原 030051
  • 收稿日期:2022-05-20 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 白艳萍 E-mail:baiyp666@163.com

Remote Sensing Scene Classification Based on Deep Learning and Lion Swarm SVM Algorithm

WANG Liqi1, HOU Yuchao2, GAO Xiang1, TAN Xiuhui1, CHENG Rong1, WANG Peng1, BAI Yanping1,2   

  1. 1. School of Mathematics, North University of China, Taiyuan 030051, China; 2. School of Information and Communication Engineering, North University of China, Taiyuan 030051, China
  • Received:2022-05-20 Online:2023-07-26 Published:2023-07-26

摘要: 针对高分辨遥感图像样本量小, 以及传统优化支持向量机(SVM)算法易陷入局部最优解、 寻优速度慢等问题, 提出一种基于深度迁移学习与狮群优化SVM(LSO-SVM)算法对遥感图像场景进行分类. 首先, 通过自适应对比度增强图像后利用颜色聚合向量提取图像颜色特征; 其次, 利用3种预训练网络分别提取图像的迁移学习深度特征; 最后, 将手工提取的图像特征与用3种预训练网络获取的特征使用系列特征融合方法进行融合, 并将其输入LSO-SVM进行图像场景分类. 结果表明, 该算法解决了小样本情况下深度学习较难训练及传统优化SVM算法易陷入局部最优解、 寻优速度慢的问题. 在80%的训练条件下, 数据集UCM Land-Use和RSSCN7的分类精度分别达到99.52%和98.57%.

关键词: 遥感图像, 图像分类, 迁移学习, 狮群优化算法, 颜色聚合向量

Abstract: Aiming at the problem of  the small sample size of high-resolution remote sensing images and  traditional optimized support vector machine (SVM) algorithms easily falling into local optima and slow optimization speed, we  proposed an algorithm based on deep transfer learning and lion swarm optimization SVM (LSO-SVM) to classify remote sensing image scene. Firstly, after enhancing the image through adaptive contrast,  color aggregation vectors were used to extract image color features. Secondly, three kinds of pretrained networks were used to extract the transfer learning depth features of images. Finally, the manually extracted image features and the features obtained using three pretrained networks were fused by using a series of feature fusion methods, and inputted them into LSO-SVM for image scene classification. The results show that the algorithm solves the problems of difficulty in deep learning training in small sample situations and the tendency of traditional optimized SVM algorithms to fall into local optima and slow search speed. Under 80% training conditions, the classification accuracy of UCM Land-Use and RSSCN7 datasets reaches 99.52% and 98.57%, respectively.

Key words: remote sensing image, image classification, transfer learning, lion swarm optimization algorithm, color coherence vector

中图分类号: 

  • TP751