吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 915-921.

• • 上一篇    下一篇

一种针对异构设备和环境变化的室内定位算法

孙顺远, 于敬源   

  1. 江南大学 物联网工程学院 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
  • 收稿日期:2022-03-03 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 孙顺远 E-mail:hzrobin@stu.jiangnan.edu.cn

An Indoor Location Algorithm for Heterogeneous Devices and Environmental Changes

SUN Shunyuan, YU Jingyuan   

  1. Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China
  • Received:2022-03-03 Online:2023-07-26 Published:2023-07-26

摘要: 针对基于蓝牙指纹的室内定位中存在设备异构性和蓝牙信标节点发生变化的问题, 提出一种针对异构设备和环境变化的室内定位算法. 首先,  利用普氏分析法对接收到的信号强度进行标准化处理, 使用核极限学习机(kernel extreme learning machine, KELM)对标准化的指纹库建模, 减少用户移动终端差异导致的信号强度差异; 其次, 当接入点(access point, AP)信号发生变化时, 利用高斯过程回归重新校准该接入点信号, 更新指纹库, 消除接入点因信号衰弱、 位置移动或环境变化导致的定位误差. 测试分析结果表明: 该算法能有效克服异构设备产生的影响, 并更好地适应环境变化.

关键词: 室内定位, 普氏分析法, 异构设备, 环境变化, 高斯过程回归

Abstract: Aiming at the problem of equipment heterogeneity and the change of Bluetooth beacon nodes in indoor location based on Bluetooth fingerprint, we proposed an indoor location algorithm for heterogeneous devices and environmental changes. Firstly, we used Procrustes analysis method to standardize the received signal strength, and used kernel extreme learning machine (KELM) to model the standardized fingerprint database to reduce the signal strength differences caused by the differences of users’ mobile terminals. Secondly, when the access point (AP) signal changed, the access point signal was recalibrated by Gaussian process regression (GPR), and the fingerprint database was updated to eliminate the positioning error caused by the weak signal, position movement or environmental change of the access point. Test analysis results show that the algorithm can effectively overcome the impact of heterogeneous equipment, and better adapt to the environmental changes.

Key words: indoor location, Procrustes analysis method, heterogeneous equipment, environmental change, Gaussian process regression (GPR)

中图分类号: 

  •