吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 929-936.

• • 上一篇    下一篇

 一种MCSEM数据噪声压制方法

李肃义1, 张欣雨1, 杨强1, 张熠1, 刁庶2   

  1. 1. 吉林大学 仪器科学与电气工程学院, 长春 130061; 2. 无锡职业技术学院 控制技术学院, 江苏 无锡 214121
  • 收稿日期:2022-09-01 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 刁庶 E-mail:diaoshu@jlu.edu.cn

A Noise Suppression Method for MCSEM Data

LI Suyi1, ZHANG Xinyu1, YANG Qiang1, ZHANG Yi1, DIAO Shu2   

  1. 1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China;2. School of Control Technology, Wuxi Institute of Technology, Wuxi 214121, Jiangsu Province, China
  • Received:2022-09-01 Online:2023-07-26 Published:2023-07-26

摘要: 针对海洋可控源电磁(MCSEM)信号在勘探中极易受各种噪声干扰, 影响后期反演以及数据处理准确性的问题, 提出一种注意力机制引导的卷积自编码器海洋可控源电磁数据消噪方法. 首先基于自编码器, 构建基于卷积自编码器的海洋可控源电磁数据消噪网络, 然后根据数据中存在噪声的特点对其进行优化, 加深网络深度、 引入注意力机制, 使网络能更关注数据中的有效信号特征, 增强特征提取能力, 构建网络模型, 实现对海洋可控源电磁数据噪声的压制. 实验结果表明, 在对海洋可控源电磁数据噪声压制中, 该方法比db8小波消噪方法和变分模态分解消噪方法信噪比更高、 均方误差更低, 同时应用到实测数据中仍能较完整地保留信号特征并增加偏移距的可解释范围, 证明了该方法在海洋可控源电磁数据噪声压制中的有效性.

关键词: 海洋可控源电磁法, 深度学习, 卷积自编码器, 注意力机制, 噪声抑制

Abstract: Aiming at  the problem that marine controlled-source electromagnetic (MCSEM) signals were prone to be interfered by various noises in exploration, which  affected the accuracy of later inversion and data processing, we proposed an attention mechanism-guided convolutional autoencoder marine controlled-source electromagnetic data denoising method. Firstly, based on  the  autoencoder, we constructed a noise suppression network based on convolutional autoencoder for marine controlled-source electromagnetic data. Secondly, we opimized it according to the characteristics of noise in the data, deepened the depth of the network, introduced attention mechanism to make the network pay more attention to the effective signal features in the data, enhanced the feature extraction ability, constructed the network model, and realized the noise suppression of marine controlled-source electromagnetic data. The experimental results show that this method has higher signal-to-noise ratio and lower mean square error than the db8 wavelet noise suppression method and the variational mode decomposition noise suppression method. Meanwhile, it can still retain the signal features and increase the interpretable range of offset distance in the measured data, which proves the effectiveness of this method in the noise suppression of marine controlled\|source electromagnetic data.

Key words: marine controlled-source electromagnetic method, deep learning, convolutional autoencoder, attention mechanism, noise suppression

中图分类号: 

  • TP391