吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1139-1146.

• • 上一篇    下一篇

基于离散粒子群的SDN动态流调度算法

刘威1, 高新成2, 王启龙1, 张宣1, 王莉利1   

  1. 1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318;
    2. 东北石油大学 现代教育技术中心, 黑龙江 大庆 163318
  • 收稿日期:2022-09-15 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 高新成 E-mail:gxc@nepu.edu.cn

SDN Dynamic Flow  Scheduling Algorithm Based on Discrete Particle Swarm Optimization

LIU Wei1, GAO Xincheng2,  WANG Qilong1, ZHANG Xuan1, WANG Lili1   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China; 
    2. Center of Modern Education Technique, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
  • Received:2022-09-15 Online:2023-09-26 Published:2023-09-26

摘要: 针对数据中心网络中流量路径分配不合理、 易导致大流冲突的问题, 提出一种基于离散粒子群的软件定义网络(SDN)流量调度算法. 该算法重定义粒子群内部的寻解过程, 以最优化网络性能为目标, 动态地为数据中心的流量分配最优路径, 以减少大流量冲突; 并引入Metropolis设计多元化最优调度方案, 确保数据中心流量的合理调度. 与其他流量调度算法进行对比验证的实验结果表明, 该算法提升了网络质量, 降低了大流时延, 实现了更好的负载均衡.

关键词: 数据中心, 软件定义网络(SDN), 离散粒子群, 流调度, 负载均衡

Abstract: Aiming at the problem of unreasonable traffic-path allocation and elephant flow collision in data center networks, we proposed a 
software defined network (SDN) flow scheduling algorithm based on discrete partical swarm optimization. The algorithm redefined the search  process within the partical swarm with the goal of optimizing  network performance,  dynamically allocated optimal paths for  data center traffic to reduce elephant flow collision, and introduced Metropolis to design  diversified optimal  scheduling scheme to ensure reasonable scheduling of data center traffic. The experimental results of  comparing and verifying with other flow scheduling algorithms show that the algorithm improves network quality, reduces  elephant flow delay, and achieves a better
 load balancing of network.

Key words: data center, software defined network (SDN), discrete particle swarm optimization, flow scheduling, load balancing

中图分类号: 

  • TP393